PREVIOUS SEMESTER EXAMINATION DECEMBER-2022

Program: electrical fy $4, ~ B$, duh (5 Duration: 03 Hours
 Cr,urse Code: BS-BTE401
 Course Name: APPLIED MATHEMATICS-IV

 Maximum Points: 100
 Semester: IV

- Attempt any five out of seven questions
- Use of scientific calculator is allowed.

(Government Aided Autonomous Institute) Munshii Nagar, Andheri (W) Mumbai - 400058

PRE'VIOUS SEMESTER EXAMINATION DECEMBER-2022

(Government Aided Autonomous Institute)
Muns'in Nagar, Andheri (W) Mumbai - 400058

PREVICUS SEMYSTER EXAMINATION DECEMBER-2022

Bharatiya Vidya Bhavan's

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute)
Munshi Nagar, Andheri (West), Mumbai - 400058

Previous Semester Exam Dec. 2022

Program: Electrical Engineering Course code: PC-BTE401 Name of the Course: Analog Circuits

Duration: 3 Hour Maximum Marks: 100 Semester: IV

Solve any five questions out of seven.

B (i) Calculate lower cutoff frequency due to C_{1}
Given $\mathrm{h}_{\mathrm{ie}}=4 \mathrm{~K}, \mathrm{~h}_{\mathrm{fe}}=100$

(ii) Determine the bandwidth of the amplifier shown below if UGB of opamp is 1 MHz

(iii) State and explain Miller's Theorem

6 A What are the advantages of negative feedback?
B With the help of suitable block diagram explain the different types of negative feedback. For each type give feedback factor, input resistance, output resistance.

7A Design first order Butterworth HPF at cutoff frequency 1 kHz and passband gain of 2. Draw circuit diagram. Classify the filter designed as analog/digital, passive/active, audio/radio. Justify the answer.
B (i) Derive the formula for resonant frequency for Wien-bridge oscillator, For the circuit of Wein Bridge Oscillator using opamp, the component

05	1	$冫$	2.1 .2
10	4	2	1.4 .1
10	4	2	1.4 .1

$\begin{array}{llll}8 & 5 & 3 & 2.1 .2\end{array}$

8	5	3	2.1 .2
4	5	3	2.1 .2

(ii) values used are, $\mathrm{R}=5.1 \mathrm{~K} \Omega, \mathrm{C}=1 \mathrm{nF}$, for the feedback network. $\mathrm{R}_{1}=5.1$ $\mathrm{K} \Omega$ and $\mathrm{R}_{\mathrm{f}}=12 \mathrm{~K} \Omega$ for opamp. Draw circuit diagram. Determine whether the circuit will oscillate or not. If yes, obtain the output frequency.

BharatiyaVidyakhavan's

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)
Munshi Nagar, Audheri (W) Mumbni - 400058
Previous semester Examination - December 2022
Program: B.Tech. (Electrical) S, $4, B \sqrt{1+c} A C$ Sem

Course Code: PC-BTE402
Course Name: Electrical and electronic measurement

Notes:

1. Question number 1 compulsory.
2. Attempt any four questions out of remaining six.

3 Draw neat diagrams.
4. Assume suitable data if necessary.

(b)	Explain in detail a five point calibration method with flow chart.	05	2	L1	7
(c)	Explain the term 1. Sampling and holding 2. Quantizing and encoding	05	2	L2	5
(d)	With the help of neat diagram derive expression of shunt resistance ($\mathrm{R}_{\text {sh }}$) used in Ammeter.	05	1	L2	2
4.(a)	With the help of neat block diagram explain in detail working of digital multi-meter.	10	1	L1	5
(b)	With the help of neat diagram explain in detail how to measure time interval between two events digitally?	10	1	L1	4
5. (a)	Explain with the help of a neat diagram and expression how to measure power in the following condition.	10	3	L2	2
(b)	Draw and explain the operation of a meggar used for high resistance measurement.	10	1	L2	2
6. (a)	A moving-coil instrument whose resistance is 25Ω gives a full-scale deflection with a voltage of 25 mV . This instrument is to be used with a series multiplier to extend its range tol0 V . Calculate multiplier resistance value?	05	3	L3	1

(b)	Calculate CT burden in following conditions Fig. (a) Fig. (b)	05	2	L3	3
(c)	With the help of neat diagram explain in details how to measure water level by using Capacitive method	10	2	L2	6
7. (a)	Draw the block diagram of a CRO and explain the different components in detail.	15	2	L2	4
(b)	For a particular measurement, the wattmeter readings were 5000 W and 1000 W . Calculate the power and power factor if one of the meters has to be reversed.	5	2	L2	2

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058
Previous Semester Examination December 2022 $291121 \sim 2$

Course Code: PC-BTE403

Course Name: Signals and Systems

Semester:IV

Note:

- Attempt any FIVE question out of SEVEN questions.
- Answers to all sub questions should be grouped together.
- In the absence of any data, make suitable assumptions and justify the same.

Previous Semester Examination December 2022

	i) Determine Impulse response of the system ii) Determine output of the system when input $x(n)=(0.25)^{n} u(n)$ with initial output of the system $y(-1)=0$. (Use time domain method)			
4a	Realize given DT system in series and parallel form $H(z)=\frac{z-4}{(z-1)(z-3)(z-6)}$	10		07
4b	Obtain Direct form I and Direct form II realization of a system with transfer function $H(s)=\frac{15 s^{2}-2 s+17}{s^{3}-7 s^{2}+8 s-9}$.	10		07
5 a	Determine LT and ROC for the following signals i) $\quad 6 \sin (20 t)+7 \cos (40 t)$ ii) $\quad f(t+10)$ if $f(t)=4 e^{-2 t} u(t)+5 e^{3 t} u(-t)$	10		03
5b	Consider a LTI system represented by $\frac{d^{2} y}{d t^{2}}+3 \frac{d y}{d t}+4 y(t)=x(t)$ i) Determine its impulse response. ii) Determine output when input $x(t)=e^{-4 t} u(t)$ Use Laplace Transform only.	10		03
6 a	Determine Inverse ZT of $X(z)=\frac{z}{(z-5)(z-3)(z-1)}$ assuming all possible ROC combinations	10		05
6 b	Determine ZT and ROC of following signals i) $x[n]=\sin (50 n)-\cos (20 n)$ ii) $x[n]=e^{-j 5 n} u[n]+e^{j 5 n} u[-n-1]+e^{-j 15 n} u[n]$	10	-	05
7 a	The output of the system $y[n]=(2)^{n} u[n]+(5)^{n} u[n]$ when input applied is $x[n]=(3)^{n} u[n]$. i) Determine impulse response of the system. ii) Draw pole-zero plot of the systern and comment on the stability	10		06
76	State and prove initial and final value theorem of ZT	10		06

Bharatiya Vidya Bhavan's

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute)
Munshi Nagar, Andheri (West), Mumbai - 400058
Previous Semester Exam Dec. 2022
Program: Electrical Engineering_ $4,4,3,1 / e l$ Course code: PC-BTE404
Name of the Course: Microprocessor and Microcontroller

- Solve any five questions out of seven.

Duration: 3 Hours
Max. Marks: 100
Sem. IV

- Answers to all sub questions should be grouped together.
- Make suitable assumptions whenever necessary. State them clearly.
- Diagrams drawn to support your answer should be clearly visible.

ii	Explain what is represented by the following instructions. Specify its significance. MOV IE, \#10000010B	2	1	2	1.6 .1
Bi	Write a program to take data from P1 and send it to P2 continuously. Explain	4	1	3	13,7
ii	Draw the interfacing diagram with LCD and 8051, in which Port 1 is used to connect data bus of 8051. P 2.0, P 2.1 and P2.2 are to be connected to RS, $\mathrm{R} / \overline{\mathrm{W}}, \mathrm{E}$ respectively. With respect to the diagram explain the following code. MOV P1, A SETB P2.0 CLR P2.1 SETB P2.2 ACALL DELAY CLR P2.2 RET	6	2	3	1,4,1
$6 \mathrm{~A}$	Show the status of the carry, auxiliary carry and parity flag after executing following instructions MOV A, \#9DH ADD A, \#54H	6	1	2	1.6.1
ii	Draw the diagram showing the PSW register. Hence select bank 2.	4	1	2	1.6 .1
B	Explain registers TMOD, SCON, SBUF. A program to receive data at a baud rate of 4800 is to be written using timer 1 in mode 2. Explain initialization required i.e. values to be stored in TMOD, SCON, TH1	10	1	3	1.4.1
7A \mathbf{i} 1	Draw control word format of 8255 . Hence find the control word of the 8255 for all the ports A, B, and C as output ports (mode 0).	4	2	3	1.4.1
ii	Stepper motor is connected to 8051 using port A of 8255 . Determine the control word required. Explain the same. How is it moved to the control register?	6	2	3	1.4.1
B	Determine the address space allocated to data RAM in figure shown below.	10	3	3	13.1
	8051	$\overline{C E}$			

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058

PREVIOUS SEMESTER EXAMINATION JANUARY 2023
 si tun cot cm

Program: Electrical Engineering
Course Code: PC-BTE 405
Maximum Points:
Course Name: Electrical Machines -1
Semester: IV

Notes:

S.Y.D.FUC AC T Dian ion: Sous

- Solve any five questions out of seven
- Make suitable assumptions wherever necessary
- Combine all the sub-questions in a given question together
- All Diagrams should be neat and clear

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058

PREVIOUS SEMESTER EXAMINATION JANUARY 2023

