

63

100

70

125

62

113

64

116

The following data gives the heights in inches(X) and weights in

65

110

A crv X has PDF defined as $f(x) = \frac{k}{1+x^2}, -\infty < x < \infty$ Find k

In an examination it is laid down that a student passes if he

secures 30% or more marks. He is placed in Ist, IInd or IIIrd division according as he secures 60% or more marks, between 45% & 60% and between 30% & 45% respectively. He gets distinction in case he secures 80% or more marks. It is noticed from the result that 10% of the students failed in the examination

where as 5% of them obtained distinction. Calculate the percentage of students placed in the second division.

A & B throw alternately a pair of dice whoever throw '9' first

wins the game. If 'A' starts the game. What are their chances of

Solve using Taylor's series method $x \frac{dy}{dx} = x - y$; y(2) = 2, Find

Evaluate P(X+Y)=3.

68

123

lbs(Y) of a random sample of 9 students

64

115

Estimate the weischt of a student with height 59 inches.

68

130

QI

b)

QÌ

c)

QII

OII

b)

QIII a).

winnin?

a)

Х

Ŷ

61

112

mean, variance & $P(X\geq 0)$

10	2	2	2
06	1	2	7

3

1

2

3

1

1

06

08

10

1

3

3

1

7

Bharatiya Vidya Bhavan's SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

PREVIOUS SEMESTER EXAMINATION DECEMBER-2022

î	y of y = 21										
OTT	y at X 4.1	ta of an a	article in si	x shops he	fore and	after a	a special	06	1	2	4
b)	The soles-ua	campain	n are as m	nder			•				
0)	Fliend		R		D	Ē	F				
	Shops	52		- 31	48	50	42				
	Beiore	22	20	51	1.0						
	Campaign		20	- 20	55	56	45	4	1		
	After	38	2.9	50		100	15				
	Campaign	<u> </u>	1			TOS	<u> </u>	4	ļ		
	Can the carr	ipaign be	judged to	be a succe	ss at .570	nother	natice	08	1	+	3
QIII	In an exami	nation m	arks obtain	ned by stud	ents in i	th ma	naucs, ane 51 53				
C)	physics and	chemist	ry are norn	nally distric	mana anti	ur me velv T	ans 51,55 Jind the				
	and 46 with	n standard	1 deviation	S 10,12,10	respecti						
	probability	of securi	ing total m	arks (1) 1 80	or more	5 (II):	90 01				1
	below		<u></u>					+	+	_	
				- chon hos	fond fro	meyn	erience	06	1	3	2
QIV	Suppose th	at a local	appliance	s snop nas 	iotribute	d as Pi	oisson				
a)	that the demand for tube lights folightly distributed as i obsolution							ł			
	with a mean of 4 tubes per week. If the shop keeps of tubengins										
	during a pa	articular v	week. what	that week?			• •••••••				
0.11	will exceed	i the sup	pry during	and balls	Three h	alls ar	e drawn	06	2	2	2
	An urn co	ntaras 4	white and .	5 Ieu Jans.	-2 and a	- fan tl	e number	r			
(0)	with replacement, from this urn. Find μ, σ^2 and σ for the number										
	of red ball	s drawn.								<u> </u>	6
QIV	/ Solve the	following	g system b	y Gauss – J	acobi 1	netho	d to	08	5		ľ
(c)	30x - 2.y	+3z=7	5, 2x + 2y -	+18z = 30,	x + 17y	-2z =	48				
QV	Fit a 'oinor	mial dist	ribution fo	r the follow	ving data	and c	compare	06		L	2
a)	the theore	tical freq	uencies w	ith the actu	al ones:						
	Σ	ζ 0	1 2	3 4	5						
		f 2	14 20	34 22	8						
Q	A certain	drug is	claimed to	o be effect	ive in c	uring	cold. In a	an 06	1	2	>
b)	experime	nt on 50	0 persons	with cold,	half of	them	were giv	en			
	the drug	and half	of them v	vere given	sugar p	IIIS. I Norvie	ne patien og table	15			
	reactions	to trie tri	eatment are	Harmed	No effe	ect		{			
			erhen	raimou		~~~					

B'naratiya Vidya Bhavan's SARDAR PATEL COL'LEGE OF ENGINEERING

(Government Aided Autonomous Institute) Muns'ni Nagar, Andheri (W) Mumbai – 400058

PREVIC/US SEM2:STER EXAMINATION DECEMBER-2022

	Drug	150	30)	7	0						
	Sugar Pills	130	4	0	1	30						
	On t drug	he basis (and sugar	of this pills d	data iffer	, can i signifi	t be conc cantly in	cluded the	hat the old?	09	2	2	6
2V S	Solve, by Ga 8x -	auss - Seid3y + 2z =	lel met 20	hod,	the fol	lowing sy	ystem:		08	5		Ů
	4х + бх +	-11y - z = -3y + 12z =	33 = 35									
QVI	Compute sp	pearman's	rank co	oorel	ation c	oefficien	t for the		06	2	1	1
a)	Ionowing d	X I	3 20	34	52	12						
		Y 3	9 23	35	18	46						
QVI b)	A drug is pressure w Is it reason	given to rere record nable to be ressure?	10 pat ed to b elieve t	tients e 3, 6 hat t	s and 5 5, -2,, 4 he dru	incremen , -3, 4, 0, g has no	ts in thei 0, 2,6. effect on	r blood change	06	1	3	5
QVI c)	Using Run solution at	x = 0.6 fo	$\frac{dy}{dx} = -$	{ I ∨ √x	th order + y, gi	r} find the	e numerio +) = 0.41	cal using h	08	3	1	7
	= 0.2.				<u>_,</u> ;			. <u> </u>		_		
QVI I a)	Using New	wton-Raph	ison me	ethoo	l find t cimal.	he root of	$f x \log_{10} x$	=12.34	06	3	3	6
QVI Ib)	Using Eul taking h=	er's Meth 0.2 giver	od find that	the	approx	imate val	ue of y a	t x = 1	06	2	2	7
	$\left \frac{\mathrm{d}y}{\mathrm{d}x} = x + y\right $	y and y(0)	= 1. A	lso c	ompare	e it with G	xact valu	ie				
QVI	Solve by	Gauss $-E$	liminat	tion l	Method $+ y - 4^{\circ}$	l: z+3w =′	3.		08	3	3	6
	5x - 4y +	-3z-6w=	≈2, x –	, 37 2y –	z+2w	= -2	,					

201121

Bharatiya Vidya Bhavan's

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai - 400058

Previous Semester Exam Dec. 2022

Program: Electrical Engineering Course code: PC-BTE401 Name of the Course: Analog Circuits

Duration: 3 Hour Maximum Marks: 100 Semester: IV

Solve any five questions out of seven.

Q. No		Points	C0	BL	Pi
1	State whether following statements are True/False. Justify your answer.				
A	P _{dmax} rating is one of the important rating in power amplifier.	05	1	5	1.3.1
R	Active filters are preferred over passive filters.	05	5	5	1,3.1
Ĉ	Gain of BJT amplifier is more at higher frequencies compared to midband frequencies.	05	1	5	1.3.1
D	Oscillator circuit requires ac as well as dc input signal.	05	5	5	1.3.1
2 A	Explain classification of Power Amplifiers.	10	1	1	1.4.1
B	What is crossover distortion? How is it eliminated?	10	1	1	1.4.1
3 A	With the help of neat circuit diagram and waveforms, show how IC 555 can be used as monostable multivibrator. In the above circuit if $R = 100$	10	2	3	1.4.1
В	Explain low voltage regulator using IC 723.	10	2	1	1.4.1
	$T \rightarrow T = T = T = T = T = T = T = T = T = $	10	3	2	1.4.1
4 A	Explain how IC 7805 can be used to supply a current of TA to a 1082, 10W load.	10	Ū	-	
B	Explain the circuit to boost the current of IC 7805.	10	3	2	2.1.2
5 A	Discuss the reasons for difference in frequency response of BJT amplifier and on amp. Elaborate with suitable diagrams.	10	1	1	2.1.2

B (i) Calculate lower cutoff frequency due to C_1 Given $h_{ie} = 4K$, $h_{fe} = 100$

Determine the bandwidth of the amplifier shown below if UGB of opamp 2.1.2 02 3 1 **(ii)** is 1 MHz

(iii)	State and explain Miller's Theorem	05	1	`1	2.1.2
6 Á	What are the advantages of negative feedback?	10	4	2	1.4.1
В	With the help of suitable block diagram explain the different types of negative feedback. For each type give feedback factor, input resistance, output resistance.	10	4	2	1.4.1
7 A	Design first order Butterworth HPF at cutoff frequency lkHz and passband gain of 2. Draw circuit diagram. Classify the filter designed as analog/digital, passive/active, audio/radio.Justify the answer.	8	5	3	2.1.2
B (i)	Derive the formula for resonant frequency for Wien-bridge oscillator,	8	5	3	2.1.2
(ii)	For the circuit of Wein Bridge Oscillator using opamp, the component values used are, $R = 5.1 \text{ K}\Omega$, $C = 1 \text{nF}$, for the feedback network. $R_i = 5.1 \text{ K}\Omega$ and $R_f = 12 \text{ K}\Omega$ for opamp. Draw circuit diagram. Determine whether the circuit will oscillate or not. If yes, obtain the output frequency.	4	5	3	2.1.2

2.1.2 3 1 3

BharatiyaVidyaBhavan's

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

Previous semester Examination - December 2022

S. Y. B. Tak CE Som Duration: 3 hrs.

Course Code: PC-BTE402

Program: B.Tech. (Electrical)

Duration: 3 hrs. Maximum Points: 100

Semester: IV

Course Name: Electrical and electronic measurement

Notes:

- 1. Question number 1 compulsory.
- 2. Attempt any four questions out of remaining six.
- 3 Draw neat diagrams.
- 4. Assume suitable data if necessary.

No.	Questions	Pts,	CO	BL,	Mod.
1. (a)	With the help of neat diagram explain in detail construction and working principle of photo multiplier.	10	2	L2	6
(b)	Explain in short eddy current damping system and derive the expression for damping torque of metal disc.	10	2	L3	1
2. (a)	Find the frequency of the horizontal plates if the frequency applied to vertical plate is 50 Hz for the pattern shown in figure (a) and (b). (a) (b)	05	1	L2	4
(b)	Draw and explain the nature of equivalent circuit and corresponding phasor diagram of a current transformer. Derive expressions for the corresponding ratio error and phase angle error.	15	1	L1	3
3. (a)	Describe with clear schematic diagram how high voltage, current and power are measured with the help of instrument transformers.	05	2	L1	3

(b)	Explain in detail a five point calibration method with flow chart.	05	2	L1	7
(c)	Explain the term Sampling and holding Quantizing and encoding 	05	2	L2	5
(d)	With the help of neat diagram derive expression of shunt resistance (R_{sh}) used in Ammeter.	05	1	L2	2
4.(a)	With the help of neat block diagram explain in detail working of digital multi-meter.	10	1	L1	5
(b)	With the help of neat diagram explain in detail how to measure time interval between two events digitally?	10	1	L1	4
5. (a)	Explain with the help of a neat diagram and expression how to measure power in the following condition. a L_a	10	3	L2	2
(b)	Draw and explain the operation of a meggar used for high resistance measurement.	10	1	L2	2
6. (a)	A moving-coil instrument whose resistance is 25Ω gives a full-scale deflection with a voltage of 25 mV. This instrument is to be used with a series multiplier to extend its range to 10 V. Calculate multiplier resistance value?	05	3	L3	1

(b)	Calculate CT burden in following conditions 1000/5A 1000/5A 1000/5A 1000/5A 1000/5A 1000/5A 1000/5A 1000/5A 1000/5A 1000/5A 1000/5A 1000/5A Fig. (a) Fig. (b)	05	2	L3	3
(c)	With the help of neat diagram explain in details how to measure water level by using Capacitive method	10	2	L2	6
7. (a)	Draw the block diagram of a CRO and explain the different components in detail.	15	2	L2	4
(b)	For a particular measurement, the wattmeter readings were 5000 W and 1000 W. Calculate the power and power factor if one of the meters has to be reversed.	5	2	L2	2

Bharatiya Vidya Bhavan's

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

Previous Semester Examination December 2022

Program:

1. Tack Ora ۲

Course Code: PC-BTE403

Maximum Points:100 Semester:IV

Duration: 3 Hr

29/12/

Course Name: Signals and Systems

DSY BTech

Note:

- Attempt any FIVE question out of SEVEN questions. •
- Answers to all sub questions should be grouped together. •
- In the absence of any data, make suitable assumptions and justify the same. •

	Q. Io.	Questions	Points	со	BL	Module No.
1	a	Classify system $y(t) = sin(x(t))$ as static/dynamic, linear/non- linear, time-variant/invariant, causal/non-causal and stable/unstable.	05			01
1	b	Consider a signal $x(n) = (0.7)^n u(n)$. Test if the signal is i) energy or power signal. ii) Periodic or aperiodic	05			01
10	C	If $x(t) = 5u(t)$ plot signals $x(t-5)$, $x(t+3)$, $x(3t)$, $x(t/4)$ and $x(-t)$	05			01
10	đ	Determine output of following system if $x[n] = \{4, 1, -2, 1\}$ and $h[n] = \{-5, 2, -3\}$	05			01
28	1	A mechanical system dynamics are represented by $\frac{d^2y}{dt^2} + 5 \frac{dy}{dt} + 6y(t) = x(t) \text{ where } x(t) \text{ is input and } y(t) \text{ is the}$ output. Using Fourier transform determine the output of the system if $x(t) = e^{-7t} u(t)$.	10			03
2t	,	Determine Fourier series of a half wave rectifier output if input applied to the rectifier if 10 Sin(5t).	10			03
38	1	Convolve two signals $x1(t) = e^{-2t} u(t)$ and $x2(t) = u(t)$ using Graphical method.	10			02
3b	,	Consider a system described by a difference equation 3y[n] + 4y[n-1] = x[n].	10			02

Bharatiya Vidya Bhavan's

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

Previous Semester Examination December 2022

	i) Determine Impulse response of the system			
	ii) Determine output of the system when input			
	$x(n) = (0.25)^{n} u(n)$ with initial output of the system			
	$\mathbf{y}(-1)=0.$			
	(Use time domain method)			
4a	Realize given DT system in series and parallel form $H(z) = \frac{z-4}{(z-1)(z-3)(z-6)}$	10	07	
4b	Obtain Direct form I and Direct form II realization of a system with transfer function $H(s) = \frac{15s^2 - 2s + 17}{s^3 - 7s^2 + 8s - 9}$.	10	07	
5a	Determine LT and ROC for the following signals i) $6 \sin(20 t) + 7 \cos(40 t)$ ii) $f(t+10)$ if $f(t) = 4 e^{-2t} u(t) + 5 e^{-3t} u(-t)$	10	03	
5b	Consider a LTI system represented by $\frac{d^2y}{dt^2} + 3 \frac{dy}{dt} + 4y(t) = x(t)$ i) Determine its impulse response. ii) Determine output when input x (t) = e^{-4t} u (t) Use Laplace Transform only.	10	03	
6a	Determine Inverse ZT of $X(z) = \frac{z}{(z-5)(z-3)(z-1)}$ assuming all possible ROC combinations	10	05	
6b	Determine ZT and ROC of following signals i > x[n] = sin(50n) - cos(20n) ii) $x[n] = e^{-j5n} u[n] + e^{j5n} u[-n-1] + e^{-j15n} u[n]$	10	05	
7a	 The output of the system y[n] = (2)ⁿ u[n] + (5)ⁿ u[n] when input applied is x[n] = (3)ⁿ u[n]. i) Determine impulse response of the system. ii) Draw pole-zero plot of the system and comment on the stability 	10	06	
7b	State and prove initial and final value theorem of ZT	10	06	

Program:

Course code: PC-BTE404

Bharatiya Vidya Bhavan's

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai - 400058 Previous Semester Exam Dec. 2022

S. Y. S. Fuly Leun 10 Duration: 3 Hours Max. Marks: 100 Sem. IV

Jolin

Sut

Solve any five questions out of seven. .

Electrical Engineering

Name of the Course: Microprocessor and Microcontrol

- Answers to all sub questions should be grouped together.
 - Make suitable assumptions whenever necessary. State them clearly.
 - Diagrams drawn to support your answer should be clearly visible.

1 S I	state whether following statements are True/False. Justify the same. MOV A, #54H	20	1,2	5	14
I	MOV A , #54H	1			1
	XRL A, #78H				
A	After executing above A will contain 2CH.		1		
ii 8	031 is called ROMless 8051.			1	
iii V	WR is used to get the converted data out of the ADC0804 chip				
iv T	The instruction "SETB P2.1" makes all pins of P2 high.			1	
v In	n IBM PC keyboards, a single microcontroller takes care of hardware and				
s	oftware interfacing of the keyboard.				
				<u> </u>	<u>†</u>
2 V	Vhat is the result after executing following? Explain	20	1	1	1.3.
I I M	10V A, #25H				1
A	NL A, #0EH				
ii M	10V A, # 04H		<u> </u>	ļ	+
	DRL A, # 68H				
iii M	10V A , #39H				
	PL A				
iv M	10V A , #66H				
R	RA				
3A D	escribe the internal architecture of 8051 microcontroller with neat diagram.	10	1	3	14.
BW	ith the help of neat diagram explain RAM allocation in 8051. Hence explain	10	2	2	1.3.1
4 E	xplain with suitable diagram, interfacing of 4x4 matrix keyboard with 8051	10	2	2	I.3.
A E	xplain the method to detect key press.				
B E	xplain the connection between 8051 and DAC0808 with the help of a neat	10	2	2	1.3.
in	terfacing diagram. Write a program to generate saw tooth waveform.				
5A Ā	program to generate a square waves, of 50 Hz frequency on P1.2 using	8	1	3	1.4.
i in	terrupts is to be written. Assume $XTAL = 11.0592$ MHZ. The timer 0 is to				
be	e used in mode 1. Explain the initialization required, i.e. determine the	-			
va	alues to be loaded in (i) timer registers (ii) Interrupt register	1			

ii	Explain what is represented by the following instructions. Specify its significance	2	1	2	1.6.1
Bi	Write a program to take data from P1 and cond it to D2 continue to The	+		-	
ii	Draw the interfacing diagram with I CD and 8051 in which Down 1	4		3	1.3.1
	connect data bus of 8051 P 20 P 21 and P22 are to be used to	0	2	3	1.4.1
	R/\overline{W} E representation by With				
	, E respectively. With respect to the diagram explain the following	Ì			ļ
	code.	1	ł		
	MOV P1, A				1
	CIR P2.0				
	SETB P2.2				
	ACALL DELAY	Į			
1	CLR P2.2			[
	RET				
64	Show the status of the same it's				
i	following instructions	6	1	2	1.6.1
-	MOV A #9DH				
	ADD A, #54H	ł			-
ii	Draw the diagram showing the PSW register. Hence select bank 2	4	1	2	1.6.1
B	Explain registers TMOD, SCON, SBUF. A program to receive data at a band	10	1	3	1.4.1
	rate of 4800 is to be written using timer 1 in mode 2. Explain initialization				
	required i.e. values to be stored in TMOD, SCON, TH1				
7.4					
7 AL	Draw control word format of 8255. Hence find the control word of the 8255	4	2	3	1.4.1
 ii	Stepper motor is connected to 8051				
	control word required Explain the same Haw is it was 1 in the	6	2	3	1.4.1
	register?				
B	Determine the address space allocated to data RAM in figure shown below	10	3	3	111
	8051		3		
	D17				
Į	P18			7	
	PSENA15			1	. 1
	A16 De	CE	WE	06	0
	A12	A13			
	P2.0				
	ALE G AS		16Kx1	3	
			Data		
		ĺ	KAM		
	P0.0 74LS373				
	ADO AO	AQ D	7 00		1
		<u> </u>	mi		
	D7				
			<u>اااك</u>		ĺ
					l

Bharatiya Vidya Bhavan's

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

S.Y. D. Tulic

mil

PREVIOUS SEMESTER EXAMINATION JANUARY 2023

Program: Electrical Engineering

Course Code: PC-BTE 405

Course Name: Electrical Machines -1

Notes:

- Solve any five questions out of seven
- Make suitable assumptions wherever necessary
- Combine all the sub-questions in a given question together
- All Diagrams should be neat and clear

)	Q.No.	Questions	Po ints	CO	BL	Mo dule No.
	1. a)	Derive expression for torque developed in rotational electromagnetic system for doubly excited system shown below.	10	1	3	2
		Stator				
	1. b)	For the magnetic circuit of Fig. N = 400 turns. Mean core length lc = 50 cm. Air gap length lg = 1.0 mm. Cross-sectional area Ac = Ag = 15 cm ² . Relative permeability of core $\mu r =$ 3000. i = 1.0 A. find 1. Flux and flux density in the air gap. 2. Inductance of the coil	10	1	3	1,2

Maximum Points:

Juration: 3 hours

Semester: IV

	In 8 pole DC	machine 90 mecha	inical degrees corresponds to	4	-	5	•
,	how many ele	ctrical degrees?					
2. b)	Tests are per transformer a	16	3	3	6		
		Open-circuit test (HV side open)	Short Circuit test (Low voltage side shorted)				
	Voltmeter	220 V	150 V				
	Ammeter	2.5 A	4.55 A				
	Wattmeter	100 W	215 W			ţ	
	HV side						
	HV side 2. Determine	e power factor for	no load and short circuit tests				
3. a)	HV side 2. Determine The λ - i reby by i = $(\frac{\lambda}{0.0})$ < g < 10 cm find the me	e power factor for elationship for an ^g oy) ² which is val 5. For current i = 5 chanical force on	no load and short circuit tests electromagnetic system is given id for the limits $0 < i < 4$ A and 3 3 A and air gap length $g = 5$ cm, the moving part, using coenergy	10	1	3	3
3. a)	HV side 2. Determine The λ - i re by i = $(\frac{\lambda}{0.0})$ < g < 10 cm find the mer of the field.	e power factor for elationship for an $\frac{g}{09}$) ² which is val b. For current i = 1 chanical force on	no load and short circuit tests electromagnetic system is given id for the limits $0 < i < 4$ A and 3 3 A and air gap length $g = 5$ cm, the moving part, using coenergy DC motor.	10	1	3	3
3. a) 3. b)	HV side 2. Determine The λ - i red by i = $(\frac{\lambda}{0.4})$ < g < 10 cm find the mer of the field. Derive indu	c power factor for elationship for an $\frac{g}{09}$) ² which is val b. For current i = chanical force on liced torque in the	no load and short circuit tests electromagnetic system is given id for the limits 0 < i < 4 A and 3 3 A and air gap length g = 5 cm, the moving part, using coenergy DC motor.	10	1	3	3
3. a) 3. b) 4.	HV side 2. Determine The λ - i relation by $i = (\frac{\lambda}{0.0})$ < g < 10 cm find the me of the field. Derive indu	e power factor for elationship for an $\frac{g}{09}$) ² which is val . For current i = chanical force on aced torque in the t note on following	no load and short circuit tests electromagnetic system is given id for the limits 0 < i < 4 Å and 3 3 Å and air gap length g = 5 cm, the moving part, using coenergy DC motor.	10 10 20	1 1 3	3	4
3. a) 3. b) 4.	HV side 2. Determine The λ - i relation by $i = (\frac{\lambda}{0.0})$ < g < 10 cm find the me of the field. Derive indu Write short A. High free	e power factor for elationship for an $\frac{g}{09}$) ² which is val . For current i = chanical force on iced torque in the t note on following equency transform	no load and short circuit tests electromagnetic system is given id for the limits 0 < i < 4 Å and 3 3 Å and air gap length g = 5 cm, the moving part, using coenergy DC motor.	10 10 20	1	3	4

¥ г

Bharatiya Vidya Bhavan's SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

PREVIOUS SEMESTER EXAMINATION JANUARY 2023

5.	 A 12 kW, 100V, 1000rpm DC shunt generator has armature resistance of Ra=0.1 ohm, shunt field winding resistance R_{fw}= 80 ohm, and N_f = 1200 turns per pole. The rated field current is 1 ampere. The magnetizing characteristic at 1000 rpm is given in table. The machine is operated as a separately excited dc generator at 1000 rpm with rated field current. 1. Neglect the armature reaction effect. Determine the terminal voltage at full load 2. Consider that armature reaction at full load is equivalent to 0.06 field amperes a. determine the full load terminal voltage b. Determine the field current required to make terminal voltage 100 V at full load condition 									20	2	3	5
	Ea (V)	22	44	67	84	98	105	108	112				
	I _f (A)	0.21	0.42	0.61	0.83	0.94	1.1	1.2	1.4				
6.	Write short note on following topics 1. compare high frequency transformer with conventional power frequency transformer 2. Autotransformers								20	3	2	7	
7. a)	What is commutator? Where it is placed? What is the function of commutator?									10	2	2	4
b)	Draw series	and ex motor.	kplain	the to	rque s	peed c	haract	eristics	of DC	10	2	2	5